Package com.rapidminer.operator.RatingPrediction

Source Code of com.rapidminer.operator.RatingPrediction._slopeOne

package com.rapidminer.operator.RatingPrediction;


import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;

import com.rapidminer.data.SkewSymmetricSparseMatrix;
import com.rapidminer.data.SymetricSparseMatrix_i;
import com.rapidminer.operator.Annotations;
import com.rapidminer.operator.IOObject;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.ProcessingStep;
import com.rapidminer.tools.LogService;
import com.rapidminer.tools.LoggingHandler;

/**
Copyright (C) 2011 Zeno Gantner

*This file is originally part of MyMediaLite.

*Ported by Matej Mihelcic (Ru�er Bo�kovi� Institute) 08.08.2011
*/

public class _slopeOne extends RatingPredictor {

     static final long serialVersionUID=3232342;
      private SkewSymmetricSparseMatrix diff_matrix;
      private SymetricSparseMatrix_i freq_matrix;

    // TODO one more way to save memory: use short instead of int internally in the SparseMatrix datatypes

    private double global_average;

    ///
    protected void InitModel()
    {
      super.InitModel();
      // create data structure
      diff_matrix = new SkewSymmetricSparseMatrix(MaxItemID + 1);
      freq_matrix = new SymetricSparseMatrix_i(MaxItemID + 1);
    }

    ///
    public boolean CanPredict(int user_id, int item_id)
    {
      if (user_id > MaxUserID || item_id > MaxItemID)
        return false;

      for(int i=0;i<GetRatings().ByUser().get(user_id).size();i++){
     
        int index=GetRatings().ByUser().get(user_id).get(i);
     
        if (freq_matrix.getLocation(item_id, GetRatings().GetItems().get(index)) != 0)
          return true;
      }
      return false;
  }

    ///
    public double Predict(int user_id, int item_id)
    {
      if (item_id > MaxItemID || user_id > MaxUserID)
        return global_average;

      double prediction = 0.0;
      int frequency = 0;

     
      for(int i=0;i<GetRatings().ByUser().get(user_id).size();i++){
       
        int index=GetRatings().ByUser().get(user_id).get(i);
       
        int other_item_id = GetRatings().GetItems().get(index);
        int f = freq_matrix.getLocation(item_id, other_item_id);
        if (f != 0)
        {
          prediction += ( diff_matrix.getLocation(item_id, other_item_id)+GetRatings().GetValues(index)) * f;
          frequency += f;
        }
      }

      if (frequency == 0){
        return global_average;
      }
     
      if(((double) prediction / frequency)>this.max_rating)
        return max_rating;
      else if(((double) prediction / frequency)<this.min_rating)
        return min_rating;
      else
      return (double) prediction / frequency;
    }

    ///
    public void Train()
    {
      InitModel();

      // default value if no prediction can be made
      global_average = GetRatings().Average();

      // compute difference sums and frequencies
     
      //memory drain

      for(int i=0;i<GetRatings().ByUser().size();i++){
       
        ArrayList<Integer> by_user_indices=GetRatings().ByUser().get(i);
       
        for(int j=0;j<by_user_indices.size();j++){
         
          int index1=by_user_indices.get(j);
         
          for(int k=j+1;k<by_user_indices.size();k++){
            int index2 = by_user_indices.get(k);
            freq_matrix.setLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2), freq_matrix.getLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2))+1);
              diff_matrix.setLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2), diff_matrix.getLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2))+(float)(GetRatings().GetValues(index1)-GetRatings().GetValues(index2)));
          }
         
        }
         
       
      }
     

      // compute average differences
      for (int i = 0; i <= MaxItemID; i++){
       
        Set<Integer> s=freq_matrix.Get(i).keySet();
        Iterator<Integer> it=s.iterator();
       
        while(it.hasNext()){
         
        int ind=it.next();
          diff_matrix.setLocation(i, ind, diff_matrix.getLocation(i,ind)/freq_matrix.getLocation(i, ind));
        }
    } 
  }

   
    public void AddUsers(List<Integer> users){
      super.AddUsers(users);
     
    }
   
    public void AddItems(List<Integer> items){
      super.AddItems(items);
     
    }
   
    public int AddRatings(List<Integer> users, List<Integer> items, List<Double> ratings){
     
      if(users==null)
        return 1;
     
      super.AddRatings(users, items, ratings);
     
      global_average = GetRatings().Average();
     
     
      for (int i = 0; i <= MaxItemID; i++){
       
        Set<Integer> s=freq_matrix.Get(i).keySet();
        Iterator<Integer> it=s.iterator();
       
        while(it.hasNext()){
         
        int ind=it.next();
          diff_matrix.setLocation(i, ind, diff_matrix.getLocation(i,ind)*freq_matrix.getLocation(i, ind));
        }
      } 

       for(int i=0;i<users.size();i++){
      ArrayList<Integer> by_item_indices=GetRatings().ByUser().get(users.get(i));

      for(int j=0;j<by_item_indices.size();j++){
       
        int index1=by_item_indices.get(j);
          if(GetRatings().GetItems().get(index1)==items.get(i))
        for(int k=j+1;k<by_item_indices.size();k++){
          int index2 = by_item_indices.get(k);
          //if(GetRatings().GetItems().get(index2)==items.get(i)){
          freq_matrix.setLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2), freq_matrix.getLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2))+1);
            diff_matrix.setLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2), diff_matrix.getLocation(GetRatings().GetItems().get(index1), GetRatings().GetItems().get(index2))+(float)(GetRatings().GetValues(index1)-GetRatings().GetValues(index2)));
            //break;
        //  } 
      }
    }
  }
     
      for (int i = 0; i <= MaxItemID; i++){
       
        Set<Integer> s=freq_matrix.Get(i).keySet();
        Iterator<Integer> it=s.iterator();
       
        while(it.hasNext()){
         
        int ind=it.next();
          diff_matrix.setLocation(i, ind, diff_matrix.getLocation(i,ind)/freq_matrix.getLocation(i, ind));
        }
      } 
     
      return 1;
}
   
    public void RetrainUsers(List<Integer> users){
      super.RetrainUsers(users);
    }
   
    public void RetrainItems(List<Integer> items){
      super.RetrainItems(items);
  }
   
    ///
    public void LoadModel(String file)
    {
      //not needed
    }

    ///
    public void SaveModel(String file)
    {
      //not needed
    }

    ///
    public String ToString()
    {
       return String.format("SlopeOne");
    }
   
      private String source = null;
       
        /** The current working operator. */
        private transient LoggingHandler loggingHandler;
       
        private transient LinkedList<ProcessingStep> processingHistory = new LinkedList<ProcessingStep>();
       
        /** Sets the source of this IOObject. */
        public void setSource(String sourceName) {
            this.source = sourceName;
        }

        /** Returns the source of this IOObject (might return null if the source is unknown). */
        public String getSource() {
            return source;
        }
       
        @Override
        public void appendOperatorToHistory(Operator operator, OutputPort port) {
          if (processingHistory == null) {
            processingHistory = new LinkedList<ProcessingStep>();
          if (operator.getProcess() != null)
            processingHistory.add(new ProcessingStep(operator, port));
        }
          ProcessingStep newStep = new ProcessingStep(operator, port);
          if (operator.getProcess() != null && (processingHistory.isEmpty() || !processingHistory.getLast().equals(newStep))) {
            processingHistory.add(newStep);
          }
        }
       
        @Override
        public List<ProcessingStep> getProcessingHistory() {
          if (processingHistory == null)
            processingHistory = new LinkedList<ProcessingStep>();
          return processingHistory;
        }
       
        /** Gets the logging associated with the operator currently working on this
         *  IOObject or the global log service if no operator was set. */
        public LoggingHandler getLog() {
            if (this.loggingHandler != null) {
                return this.loggingHandler;
            } else {
                return LogService.getGlobal();
            }
        }
       
        /** Sets the current working operator, i.e. the operator which is currently
         *  working on this IOObject. This might be used for example for logging. */
        public void setLoggingHandler(LoggingHandler loggingHandler) {
            this.loggingHandler = loggingHandler;
        }
       
      /**
       * Returns not a copy but the very same object. This is ok for IOObjects
       * which cannot be altered after creation. However, IOObjects which might be
       * changed (e.g. {@link com.rapidminer.example.ExampleSet}s) should
       * overwrite this method and return a proper copy.
       */
      public IOObject copy() {
        return this;
      }
     
      protected void initWriting() {}
   
      public Annotations getAnnotations(){
        Annotations temp=new Annotations();
        return temp;
      }
   
  }
TOP

Related Classes of com.rapidminer.operator.RatingPrediction._slopeOne

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.